
    Egl                       d dl mZ d dlmZ d dlmZmZmZmZ d dl	m
Z
mZ d dlmZmZmZ d dlmZmZmZmZmZmZmZmZmZ d dlmZmZ erd dlmZmZm Z  d d	l!m"Z"m#Z# d d
l$m%Z%  G d de          Z& G d dee&          Z'dS )    )annotations)dedent)TYPE_CHECKINGAnyCallableLiteral)deprecate_kwargdoc)BaseIndexerExpandingIndexerGroupbyIndexer)	_shared_docscreate_section_headerkwargs_numeric_onlynumba_notestemplate_headertemplate_returnstemplate_see_alsowindow_agg_numba_parameterswindow_apply_parameters)BaseWindowGroupbyRollingAndExpandingMixin)AxisQuantileInterpolationWindowingRankType)	DataFrameSeries)NDFramec                      e Zd ZU dZg dZded<   	 	 	 	 dd fdZddZ ee	d          e
d           e
d          dd           fd            ZeZ ee ed          e ed          e ed           e
d           d!d"d#$
  
        dd fd(            Z ee ed)          e ed          e ed          e ed           e
d*          d!d+d,$          	 	 	 	 	 dd fd8            Z ee ed)          e e             ed          e ed          e ed9          e ed           e
d:          d!d;d;$          	 	 	 dd fd<            Z ee ed)          e e             ed          e ed          e ed9          e ed           e
d=          d!d>d?$          	 	 	 dd fd@            Z ee ed)          e e             ed          e ed          e ed9          e ed           e
dA          d!dBdC$          	 	 	 dd fdD            Z ee ed)          e e             ed          e ed          e ed9          e ed           e
dE          d!dFdF$          	 	 	 dd fdG            Z ee ed)          e e             ed          e ed          e ed9          e ed           e
dH          d!dIdI$          	 	 	 dd fdJ            Z ee ed)           e
dK                              dLdd          e edM           ed          e ed          dNe ed9           e
dO                              dLdd           ed           e
dP                              dLdd          d!dQdR$          	 	 	 	 dd fdT            Z ee ed)           e
dK                              dLdd          e edM           ed          e ed          dUe ed9           e
dV                              dLdd           ed           e
dW                              dLdd          d!dXdY$          	 	 	 	 dd fdZ            Z ee ed)           e
dK                              dLdd          e ed          e ed          e ed9          d[ ed           e
d\                              dLdd          d!d]d^$          dd fd_            Z ee ed)          e ed          e ed          d`e ed9          da ed           e
db          d!dcdd$          dd fde            Z  ee ed)          e ed          e ed          dfe ed9          dg ed           e
dh                              dLdd          d!didj$          dd fdk            Z! ee ed)           e
dl                              dLdd          e ed          e ed          e ed           e
dm          d!dndn$           e"dndop          	 	 dd fdu                        Z# eedv ed)           e
dw                              dLdd          e ed          e ed          e ed           e
dx                              dLdd          d!dydy$          	 	 	 	 dd fd            Z$ ee ed)           e
d                              dLdd          e ed          e ed          e ed           e
d          d!dd$          	 	 	 	 dd fd            Z% ee ed)           e
d                              dLdd          e ed          e ed           e
d                              dLdd          e ed9           e
d           ed           e
d          d!dd$          	 	 	 	 dd fd            Z& xZ'S )	Expandinga  
    Provide expanding window calculations.

    Parameters
    ----------
    min_periods : int, default 1
        Minimum number of observations in window required to have a value;
        otherwise, result is ``np.nan``.

    axis : int or str, default 0
        If ``0`` or ``'index'``, roll across the rows.

        If ``1`` or ``'columns'``, roll across the columns.

        For `Series` this parameter is unused and defaults to 0.

    method : str {'single', 'table'}, default 'single'
        Execute the rolling operation per single column or row (``'single'``)
        or over the entire object (``'table'``).

        This argument is only implemented when specifying ``engine='numba'``
        in the method call.

        .. versionadded:: 1.3.0

    Returns
    -------
    pandas.api.typing.Expanding

    See Also
    --------
    rolling : Provides rolling window calculations.
    ewm : Provides exponential weighted functions.

    Notes
    -----
    See :ref:`Windowing Operations <window.expanding>` for further usage details
    and examples.

    Examples
    --------
    >>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]})
    >>> df
         B
    0  0.0
    1  1.0
    2  2.0
    3  NaN
    4  4.0

    **min_periods**

    Expanding sum with 1 vs 3 observations needed to calculate a value.

    >>> df.expanding(1).sum()
         B
    0  0.0
    1  1.0
    2  3.0
    3  3.0
    4  7.0
    >>> df.expanding(3).sum()
         B
    0  NaN
    1  NaN
    2  3.0
    3  3.0
    4  7.0
    )min_periodsaxismethodz	list[str]_attributes   r   singleNobjr   r!   intr"   r   r#   strreturnNonec                T    t                                          |||||           d S )N)r'   r!   r"   r#   	selection)super__init__)selfr'   r!   r"   r#   r-   	__class__s         Q/var/www/sysmax/venv/lib/python3.11/site-packages/pandas/core/window/expanding.pyr/   zExpanding.__init__|   s?     	# 	 	
 	
 	
 	
 	
    r   c                    t                      S )z[
        Return an indexer class that will compute the window start and end bounds
        )r   )r0   s    r2   _get_window_indexerzExpanding._get_window_indexer   s      !!!r3   	aggregatez
        See Also
        --------
        pandas.DataFrame.aggregate : Similar DataFrame method.
        pandas.Series.aggregate : Similar Series method.
        a  
        Examples
        --------
        >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
        >>> df
           A  B  C
        0  1  4  7
        1  2  5  8
        2  3  6  9

        >>> df.ewm(alpha=0.5).mean()
                  A         B         C
        0  1.000000  4.000000  7.000000
        1  1.666667  4.666667  7.666667
        2  2.428571  5.428571  8.428571
        zSeries/Dataframe )see_alsoexamplesklassr"   c                >     t                      j        |g|R i |S )N)r.   r6   )r0   funcargskwargsr1   s       r2   r6   zExpanding.aggregate   s-    @ !uww 7777777r3   ReturnszSee AlsoExamplesz        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().count()
        a    1.0
        b    2.0
        c    3.0
        d    4.0
        dtype: float64
        	expandingzcount of non NaN observationscount)window_methodaggregation_description
agg_methodFnumeric_onlyboolc                H    t                                          |          S N)rF   )r.   rB   r0   rF   r1   s     r2   rB   zExpanding.count   s    . ww}},}777r3   
Parametersz        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().apply(lambda s: s.max() - 2 * s.min())
        a   -1.0
        b    0.0
        c    1.0
        d    2.0
        dtype: float64
        zcustom aggregation functionapplyr<   Callable[..., Any]rawengine!Literal['cython', 'numba'] | Noneengine_kwargsdict[str, bool] | Noner=   tuple[Any, ...] | Noner>   dict[str, Any] | Nonec                R    t                                          ||||||          S )N)rN   rO   rQ   r=   r>   )r.   rL   )r0   r<   rN   rO   rQ   r=   r>   r1   s          r2   rL   zExpanding.apply   s7    B ww}}'  
 
 	
r3   Notesz        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().sum()
        a     1.0
        b     3.0
        c     6.0
        d    10.0
        dtype: float64
        sumc                L    t                                          |||          S N)rF   rO   rQ   )r.   rW   r0   rF   rO   rQ   r1   s       r2   rW   zExpanding.sum   .    B ww{{%'  
 
 	
r3   z        >>> ser = pd.Series([3, 2, 1, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().max()
        a    3.0
        b    3.0
        c    3.0
        d    4.0
        dtype: float64
        maximummaxc                L    t                                          |||          S rY   )r.   r]   rZ   s       r2   r]   zExpanding.max   r[   r3   z        >>> ser = pd.Series([2, 3, 4, 1], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().min()
        a    2.0
        b    2.0
        c    2.0
        d    1.0
        dtype: float64
        minimumminc                L    t                                          |||          S rY   )r.   r`   rZ   s       r2   r`   zExpanding.minG  r[   r3   z        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().mean()
        a    1.0
        b    1.5
        c    2.0
        d    2.5
        dtype: float64
        meanc                L    t                                          |||          S rY   )r.   rb   rZ   s       r2   rb   zExpanding.meann  s.    B ww||%'  
 
 	
r3   z        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().median()
        a    1.0
        b    1.5
        c    2.0
        d    2.5
        dtype: float64
        medianc                L    t                                          |||          S rY   )r.   rd   rZ   s       r2   rd   zExpanding.median  s.    B ww~~%'  
 
 	
r3   z
        ddof : int, default 1
            Delta Degrees of Freedom.  The divisor used in calculations
            is ``N - ddof``, where ``N`` represents the number of elements.

        
z1.4z/numpy.std : Equivalent method for NumPy array.
z
        The default ``ddof`` of 1 used in :meth:`Series.std` is different
        than the default ``ddof`` of 0 in :func:`numpy.std`.

        A minimum of one period is required for the rolling calculation.

        a  
        >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])

        >>> s.expanding(3).std()
        0         NaN
        1         NaN
        2    0.577350
        3    0.957427
        4    0.894427
        5    0.836660
        6    0.786796
        dtype: float64
        zstandard deviationstdddofc                N    t                                          ||||          S N)rh   rF   rO   rQ   )r.   rg   r0   rh   rF   rO   rQ   r1   s        r2   rg   zExpanding.std  1    j ww{{%'	  
 
 	
r3   z/numpy.var : Equivalent method for NumPy array.
z
        The default ``ddof`` of 1 used in :meth:`Series.var` is different
        than the default ``ddof`` of 0 in :func:`numpy.var`.

        A minimum of one period is required for the rolling calculation.

        a  
        >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])

        >>> s.expanding(3).var()
        0         NaN
        1         NaN
        2    0.333333
        3    0.916667
        4    0.800000
        5    0.700000
        6    0.619048
        dtype: float64
        variancevarc                N    t                                          ||||          S rj   )r.   rn   rk   s        r2   rn   zExpanding.var  rl   r3   z:A minimum of one period is required for the calculation.

z
        >>> s = pd.Series([0, 1, 2, 3])

        >>> s.expanding().sem()
        0         NaN
        1    0.707107
        2    0.707107
        3    0.745356
        dtype: float64
        zstandard error of meansemc                J    t                                          ||          S )N)rh   rF   )r.   rp   )r0   rh   rF   r1   s      r2   rp   zExpanding.sem4  s     F ww{{<{@@@r3   z:scipy.stats.skew : Third moment of a probability density.
zEA minimum of three periods is required for the rolling calculation.

a           >>> ser = pd.Series([-1, 0, 2, -1, 2], index=['a', 'b', 'c', 'd', 'e'])
        >>> ser.expanding().skew()
        a         NaN
        b         NaN
        c    0.935220
        d    1.414214
        e    0.315356
        dtype: float64
        zunbiased skewnessskewc                H    t                                          |          S rI   )r.   rr   rJ   s     r2   rr   zExpanding.skewY  s    : ww|||666r3   z/scipy.stats.kurtosis : Reference SciPy method.
z<A minimum of four periods is required for the calculation.

a[  
        The example below will show a rolling calculation with a window size of
        four matching the equivalent function call using `scipy.stats`.

        >>> arr = [1, 2, 3, 4, 999]
        >>> import scipy.stats
        >>> print(f"{{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}}")
        -1.200000
        >>> print(f"{{scipy.stats.kurtosis(arr, bias=False):.6f}}")
        4.999874
        >>> s = pd.Series(arr)
        >>> s.expanding(4).kurt()
        0         NaN
        1         NaN
        2         NaN
        3   -1.200000
        4    4.999874
        dtype: float64
        z,Fisher's definition of kurtosis without biaskurtc                H    t                                          |          S rI   )r.   rt   rJ   s     r2   rt   zExpanding.kurtx  s    L ww|||666r3   a  
        quantile : float
            Quantile to compute. 0 <= quantile <= 1.

            .. deprecated:: 2.1.0
                This will be renamed to 'q' in a future version.
        interpolation : {{'linear', 'lower', 'higher', 'midpoint', 'nearest'}}
            This optional parameter specifies the interpolation method to use,
            when the desired quantile lies between two data points `i` and `j`:

                * linear: `i + (j - i) * fraction`, where `fraction` is the
                  fractional part of the index surrounded by `i` and `j`.
                * lower: `i`.
                * higher: `j`.
                * nearest: `i` or `j` whichever is nearest.
                * midpoint: (`i` + `j`) / 2.
        a          >>> ser = pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f'])
        >>> ser.expanding(min_periods=4).quantile(.25)
        a     NaN
        b     NaN
        c     NaN
        d    1.75
        e    2.00
        f    2.25
        dtype: float64
        quantileq)old_arg_namenew_arg_namelinearfloatinterpolationr   c                L    t                                          |||          S )N)rw   r|   rF   )r.   rv   )r0   rw   r|   rF   r1   s       r2   rv   zExpanding.quantile  s0    h ww'%   
 
 	
r3   z.. versionadded:: 1.4.0 

a  
        method : {{'average', 'min', 'max'}}, default 'average'
            How to rank the group of records that have the same value (i.e. ties):

            * average: average rank of the group
            * min: lowest rank in the group
            * max: highest rank in the group

        ascending : bool, default True
            Whether or not the elements should be ranked in ascending order.
        pct : bool, default False
            Whether or not to display the returned rankings in percentile
            form.
        a+  
        >>> s = pd.Series([1, 4, 2, 3, 5, 3])
        >>> s.expanding().rank()
        0    1.0
        1    2.0
        2    2.0
        3    3.0
        4    5.0
        5    3.5
        dtype: float64

        >>> s.expanding().rank(method="max")
        0    1.0
        1    2.0
        2    2.0
        3    3.0
        4    5.0
        5    4.0
        dtype: float64

        >>> s.expanding().rank(method="min")
        0    1.0
        1    2.0
        2    2.0
        3    3.0
        4    5.0
        5    3.0
        dtype: float64
        rankaverageTr   	ascendingpctc                N    t                                          ||||          S )N)r#   r   r   rF   )r.   r~   )r0   r#   r   r   rF   r1   s        r2   r~   zExpanding.rank  s1    H ww||%	  
 
 	
r3   a   
        other : Series or DataFrame, optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndexed DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        ddof : int, default 1
            Delta Degrees of Freedom.  The divisor used in calculations
            is ``N - ddof``, where ``N`` represents the number of elements.
        a0          >>> ser1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser2 = pd.Series([10, 11, 13, 16], index=['a', 'b', 'c', 'd'])
        >>> ser1.expanding().cov(ser2)
        a         NaN
        b    0.500000
        c    1.500000
        d    3.333333
        dtype: float64
        zsample covariancecovotherDataFrame | Series | Nonepairwisebool | Nonec                N    t                                          ||||          S N)r   r   rh   rF   )r.   r   r0   r   r   rh   rF   r1   s        r2   r   zExpanding.cov%  s1    b ww{{%	  
 
 	
r3   aN  
        other : Series or DataFrame, optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndexed DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        z
        cov : Similar method to calculate covariance.
        numpy.corrcoef : NumPy Pearson's correlation calculation.
        ao  
        This function uses Pearson's definition of correlation
        (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient).

        When `other` is not specified, the output will be self correlation (e.g.
        all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise`
        set to `True`.

        Function will return ``NaN`` for correlations of equal valued sequences;
        this is the result of a 0/0 division error.

        When `pairwise` is set to `False`, only matching columns between `self` and
        `other` will be used.

        When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame
        with the original index on the first level, and the `other` DataFrame
        columns on the second level.

        In the case of missing elements, only complete pairwise observations
        will be used.

        a1          >>> ser1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser2 = pd.Series([10, 11, 13, 16], index=['a', 'b', 'c', 'd'])
        >>> ser1.expanding().corr(ser2)
        a         NaN
        b    1.000000
        c    0.981981
        d    0.975900
        dtype: float64
        correlationcorrc                N    t                                          ||||          S r   )r.   r   r   s        r2   r   zExpanding.corr]  s1    X ww||%	  
 
 	
r3   )r%   r   r&   N)
r'   r   r!   r(   r"   r   r#   r)   r*   r+   )r*   r   )F)rF   rG   )FNNNN)r<   rM   rN   rG   rO   rP   rQ   rR   r=   rS   r>   rT   )FNN)rF   rG   rO   rP   rQ   rR   )r%   FNN)rh   r(   rF   rG   rO   rP   rQ   rR   )r%   F)rh   r(   rF   rG   )rz   F)rw   r{   r|   r   rF   rG   )r   TFF)r#   r   r   rG   r   rG   rF   rG   )NNr%   F)r   r   r   r   rh   r(   rF   rG   )(__name__
__module____qualname____doc__r$   __annotations__r/   r5   r
   r   r   r6   aggr   r   r   r   rB   r   rL   r   r   r   rW   r]   r`   rb   rd   replacerg   rn   rp   rr   rt   r	   rv   r~   r   r   __classcell__)r1   s   @r2   r    r    3   s<        D DL ?>>K>>>>
 
 
 
 
 
 
 
 " " " " 	S[!
 
 
 
$ !;  >8 8 8 8? >8 CSi((j))j))
	
 
	
 " ?)  ,8 8 8 8 8 8- ,8 	Sl++i((j))j))
	
 
	
 " =-  6 4804'+(,
 
 
 
 
 
1 0
$ 	Sl++##%%i((j))g&&j))
	
 
	
 " %3  : #4804	

 

 

 

 

 

7 6

 	Sl++##%%i((j))g&&j))
	
 
	
 " )3  : #4804	

 

 

 

 

 

7 6

 	Sl++##%%i((j))g&&j))
	
 
	
 " )3  : #4804	

 

 

 

 

 

7 6

 	Sl++##%%i((j))g&&j))
	
 
	
 " &3  : #4804	

 

 

 

 

 

7 6

 	Sl++##%%i((j))g&&j))
	
 
	
 " (3  : #4804	

 

 

 

 

 

7 6

 	Sl++	
 	
 '$A

##E**i((j)):g&&	
 	
 '$A

j))	
 	
 '$A

! 4Y- - -` "4804
 
 
 
 
 
]- -\
 	Sl++	
 	
 '$A

##E**i((j)):g&&	
 	
 '$A

j))	
 	
 '$A

! *Y- - -` "4804
 
 
 
 
 
]- -\
 	Sl++	
 	
 '$A

i((j))g&&Fj))		
 	
 '$A

! 8A! ! !DA A A A A AE! !DA 	Sl++i((j))Eg&&Qj))		
 	
 " 35  87 7 7 7 7 79 87 	Sl++i((j)):g&&Hj))	
 	
( '$A

! NG$ $ $J7 7 7 7 7 7K$ $J7 	Sl++	
 	
$ '$A

i((j))j))
	
 	
 " *W, , ,Z _*3??? 08"	

 

 

 

 

 

 @?[, ,\

 	S&l++	
 	
 '$A

i((j))j))	
 	
< '$A

! &w< < <~ %."
 
 
 
 
 
{< <z
 	Sl++	
 	
  '$A

i((j))j))		
 	
 " 3Q) ) )X ,0 $"
 
 
 
 
 
U) )T
 	Sl++	
 	
 '$A

i((j))	
 	

 '$A

g&&	
 	
. 	j))		
 	
 " -GD D DN ,0 $"
 
 
 
 
 
KD DJ
 
 
 
 
r3   r    c                  8    e Zd ZdZej        ej        z   ZddZdS )ExpandingGroupbyz5
    Provide a expanding groupby implementation.
    r*   r   c                F    t          | j        j        t                    }|S )z
        Return an indexer class that will compute the window start and end bounds

        Returns
        -------
        GroupbyIndexer
        )groupby_indiceswindow_indexer)r   _grouperindicesr   )r0   r   s     r2   r5   z$ExpandingGroupby._get_window_indexer  s+     ( M1+
 
 
 r3   N)r*   r   )r   r   r   r   r    r$   r   r5    r3   r2   r   r     sE          '*;*GGK     r3   r   N)(
__future__r   textwrapr   typingr   r   r   r   pandas.util._decoratorsr	   r
   pandas.core.indexers.objectsr   r   r   pandas.core.window.docr   r   r   r   r   r   r   r   r   pandas.core.window.rollingr   r   pandas._typingr   r   r   pandasr   r   pandas.core.genericr   r    r   r   r3   r2   <module>r      s8   " " " " " "                        
         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
  ,                 ,+++++{
 {
 {
 {
 {
( {
 {
 {
|    ()     r3   